
Developing a 21st Century framework for lake-specific eutrophication
assessment using quantile regression

Yaoyang Xu,*1 Andrew W. Schroth,2 Donna M. Rizzo3

1Vermont EPSCoR, University of Vermont, Burlington, Vermont
2Department of Geology, University of Vermont, Burlington, Vermont
3School of Engineering, University of Vermont, Burlington, Vermont

Abstract

Over the past 301 years, researchers and water resource managers have often relied on a set of regression-

based equations to describe the relationships between secchi depth (SD), chlorophyll (Chl) and total phos-

phorous (TP) and quantitatively assess lake trophic status after Carlson (1977). Here, we develop a revised

framework for eutrophication assessment that incorporates recent statistical advances in ecology and lever-

ages the increasing availability of lake-specific datasets in the 21st Century. Long-term (1992–2012) water

quality data from Lake Champlain (LC) are used to revisit and revise classic equations of tropic state indices

(TSIChl/TP). The upper boundaries of SD–ln(Chl) and ln(Chl)–ln(TP) distributions within this dataset fit well

with quantile regression (99th, QR) to generate LC-specific TSIChl/TP equations. Our results illustrate that Carl-

son (1977)’s original TSIChl/TP equations overestimate the trophic status of LC relative to LC-specific equa-

tions, and highlight the power of the QR-derived TSIChl/TP metric. We combine TSISD and TSIChl into one

metric to indicate pseudoeutrophication and pseudomesotrophication of oligotrophic waters as well as pseu-

doeutrophication of mesotrophic waters to identify waters threatened by potential trophic shift. Additionally,

TSIChl and TSITP were coupled as a complimentary dual metric to indicate potential risks of excessive phos-

phorus loading to oligotrophic and mesotrophic waters. With these dual metric schemes, we performed clus-

ter analysis of 15 locations to spatially assess trophic status and phosphorous risks across LC. This study

describes a relatively simple and robust approach for lake-specific status assessment, the structure of which

can be broadly utilized within monitoring and research communities.

Lake eutrophication, the process by which excessive nutri-

ent loading alters the lake ecosystems from clear macrophyte-

dominated waters to turbid phytoplankton-dominated

waters, has been identified as a primary water quality problem

throughout the world for several decades (Scheffer et al. 2001;

Dodds et al. 2009; Schindler 2012). Several policy-related

frameworks (e.g., Water Framework Directive and Clean

Water Act) have been built by intergovernmental organiza-

tions (e.g., European Union) and governments (e.g., United

States) to mitigate eutrophication and restore lake ecosystems

(Soranno et al. 2008; Carvalho et al. 2013). While such regula-

tory frameworks can provide recommendations for manage-

ment decisions on multilakes/reservoirs at the regional scale,

they may be insufficient in detail when applied to individual

ecosystems at local and watershed scales, because the drivers

of lake trophic status are spatially and temporally variable

across ecosystems and environments (Smith and Schindler

2009; Wagner et al. 2011). As such, robust assessment and

monitoring of lake trophic status is a key step in developing

science-based recommendations and management decisions

for individual ecosystems.

As a starting point to trophic status assessment, Carlson

(1977)’s work introduced a set of trophic state indices (TSISD/

Chl/TP) as functions of common water quality measurements

(Secchi depth [SD], Chlorophyll [Chl], Total phosphorus

[TP]). The derivation of these metrics is illustrated in the

flow chart of Fig. 1A with relevant regression equations. The

inherent simplicity of these original TSI equations made

them popular for evaluating lake ecosystems (e.g., Matthew

and Jones 2006; Sulis et al. 2011; Umbanhowar et al. 2011).

For example, the Wikipedia dictionary defines Carlson

(1977)’s index as “one of the more commonly used trophic

indices,” and over 500 of the US Environmental Protection

Agency’s technical documents employ the original TSI equa-

tions when assessing lake trophic status. However, many

studies have noted substantial variation in the empirical

relationship between SD and Chl and Chl and TP (e.g.,

Mazumder and Havens 1998; Hoyer et al. 2002; Mooij et al.*Correspondence: yaoyang.xu@uvm.edu; yaoyangxu@gmail.com
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2010; Stow and Cha 2013), calling into question the direct

application of Carlson’s (1977) empirical equations and their

derived TSI metrics across diverse lake ecosystems. In fact,

deviations between the TSI metrics have been used recently

by researchers, including our own group, to infer lake

dynamics using a simple graphical approach (Carlson and

Havens 2005; Xu et al. 2010, 2011). In these studies, the TSI

metric deviations describe abiotic and biotic relationships, as

well as infer lake trophic structure and function (James et al.

2009; Xu et al. 2010, 2011). However, this approach may be

problematic given that the relationships between SD, Chl,

and TP and their deviations are derived from Carlson

(1977)’s empirical equations, but those empirical relation-

ships, and associated deviations of those metrics, are not

necessarily appropriate when applied to specific individual

lake ecosystems. Indeed, despite the common and diverse

application of Carlson (1977)’s original TSI indices, few

attempts have been made to develop a more robust frame-

work for trophic status assessment in the context of recent

statistical advances and the widespread availability of

ecosystem-specific long-term water quality datasets in the

21st Century.

Given recent statistical advances in ecology, another com-

ponent of Carlson (1977)’s empirical equations that warrants

attention is the “lumping” of measurements within a single

dataset, where the relationship between measured variables

may be confounded or driven by unmeasured factors (Cade

and Noon 2003). For example, a reduction in water clarity

comprised of nonalgal turbidity (e.g., inorganic suspended

particles and dissolved organic matter), can exert significant

influence on the relationship between SD and Chl (Lind

1986; Swift et al. 2006). Variability in water clarity may be

unexplained by the empirical linear relationship between SD

and CHL, given that conventional analysis (i.e., linear least

squares regression [LSR]) focuses on the mean of the

response distribution as a function of the measured factor

and cannot exclude the effect of the unmeasured factors

(Cade and Noon 2003). Similarly, it is likely that linear

regression fails to quantify the empirical relationship

between Chl and TP across a range of environmental

Fig. 1. Carlson (1977)’s framework (A) and LC-specific framework (B) summarizing the methodology (the left of vertical dash line) and modeling

results (the right of vertical dash line) for generating of TSIChl/TP equations. The “N” in the dash-line arrow indicates that the step is NOT applicable;
while the “Y” in line arrow represents that the step is applicable (YES).
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conditions, because phytoplankton biomass (measured as

Chl) may be regulated by other variables such as climate

(Brown et al. 2000; Huszar et al. 2006), other macro or

micronutrients (Mooij et al. 2010) or hydrology (An and

Park 2002). As opposed to general data “lumping” or ad hoc

isolation of the upper bounds of water quality data (e.g.,

Carlson 1977; Jones and Hubbart 2011; Jones et al. 2011),

quantile regression (QR) better quantifies possible causal rela-

tionships between ecological variables, as its statistical foun-

dation is theoretically consistent with the ecological concept

of limiting factors (Cade et al. 1999; Cade and Guo 2000;

Cade et al. 2005). As such, QR provides stronger and more

useful predictive models and should be employed to gener-

ate TSI metrics that are more representative of the trophic

status across time and space in diverse lake ecosystems.

Using 15 long-term monitoring stations in Lake Cham-

plain (LC) spanning a diverse array of hydrodynamic and

biological environments as a case study, we provide a modi-

fied framework for generating lake specific TSI metrics that is

motivated by the elegant simplicity of Carlson’s original

work. The approach utilizes routine measurement of SD,

Chl, and TP to monitor and describe lake trophic status.

Because decades of extensive research investment and

intense monitoring of the trophic status and phosphorus

loading to LC have produced a well-characterized recurring

ecosystem assessment (i.e., LCBP 2012), this long-term data-

set is ideal for testing the utility of this relatively simple

approach. If our revised framework identifies the same areas

of concern previously characterized by years of extensive

hydrodynamic and biogeochemical research across the lim-

nologically diverse segments that constitute LC, this valida-

tion presumably lends confidence that this relatively

straightforward approach will be useful for other threatened

ecosystems, where intermittent monitoring of these few

basic parameters may be the only resources available. Specifi-

cally, the objectives of this study are to:

1. Use linear regression to examine LC-specific empirical

relationships of lnSD 5 f(lnChl) and lnChl 5 f(lnTP) of

summer measurements to revisit the validity of Carlson

(1977)’s empirical equation for lake-specific ecosystems.

2. Use QR to quantify alternative LC-specific empirical rela-

tionships of SD 5 f(lnChl) and lnChl 5 f(lnTP) that

develop more robust lake-specific TSIChl and TSITP

equations.

3. Combine TSISD with the improved empirically derived

TSIChl and TSITP indices as dual metrics to classify trophic

states and identify phosphorus risks.

4. Perform multivariate analysis on the dual metrics gener-

ated by this historical dataset to spatially formulate

trophic classifications and excessive phosphorus risks

across the diverse, dynamic and extensively studied LC

ecosystem.

Materials and Procedures

Study area and data collection

As part of the St. Lawrence drainage, LC experiences simi-

lar history in geology, ecology, and biology with the Great

Lakes (Facey et al. 2012). The large basin area to lake surface

ratio (19 : 1) makes the LC ecosystem vulnerable to exoge-

nous processes which associated with anthropogenic activity,

land-use and climate change (Smeltzer et al. 2012). Due to

the complex bathymetry and extensive shoreline, the LC

ecosystem is subject to diverse endogenous processes and is

characterized as a variety of lacustrine habitats from deep

oligotrophic areas to shallow bays that are highly eutrophic

(Facey et al. 2012). Resource managers have divided LC into

13 segments (South Lake A, South Lake B, Port Henry Seg-

ment, Otter Creek Segment, Shelburne Bay, Main Lake, Bur-

lington Bay, Mallett’s Bay, Cumberland Bay, Northeast Arm,

St. Albans Bay, Isle LaMotte, and Missisquoi Bay; LCBP 2012)

for the purpose of establishing target phosphorus concentra-

tions, which is the primary nutrient of eutrophication con-

cern for exogenous and endogenous processes. TP

concentrations have generally been stable or increased dur-

ing the last 20 years in most of these segments (LCBP 2012),

and increased by 72% in Missisquoi Bay where Chl concen-

trations doubled over this period (Smeltzer et al. 2012).

Some segments for phosphorus loading and eutrophication

concern were Missisquoi Bay, St. Albans Bay, and the central

Northeast Arm; other segments were oligotrophic and meso-

trophic due to relatively low phosphorus (Levine et al. 2012;

Smeltzer et al. 2012).

Our data were obtained from the LC Long-Term Water

Quality and Biological Monitoring Program (LTMP), which

has been operated by the Vermont Department of Environ-

mental Conservation and the New York Department of Envi-

ronmental Conservation from 1992 until now (VTDEC and

NYDEC 2013). This program comprises a total of 15 sam-

pling locations distributed throughout the lake, where lim-

nological data are monitored twice per month from May to

early November each year. This LTMP database is freely

available for researchers, managers, and the public at: http://

www.vtwaterquality.org/lakes/htm/lp_longterm.htm. We

downloaded the 1992–2012 SD (m), chlorophyll a (Chl,

mg m23) and TP (mg m23) data for all 15 sampling stations,

resulting in 3545 observations (Table 1). Details of the sam-

pling methods and data quality controls can be found in the

Table 1. Statistics summary of SD (m), chlorophyll a (Chl,
mg m23) and total phosphorus (TP, mg m23).

N Mean Median Std. D Min Max

SD 3545 3.7 3.8 1.9 0.2 10.1

Chl 3545 6.1 4.2 7.0 0.4 116.4

TP 3545 24.2 16.4 17.7 5.0 235.0
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published Quality Assurance Project Plan of LTMP (VTDEC

and NYDEC 2013).

Revision of TSIChl and TSITP metrics

We revisited Carlson (1977)’s empirical approach (Fig. 1A)

and applied a natural log-transformation to all n 5 3545 LC

data and then performed linear LSR on the n 5 1426 summer

observations to generate the summer empirical lnSD 5

f(lnChl) and lnChl 5 f(lnTP) relationships for LC (Fig. 1B).

As an alternative to Carlson (1977)’s approach, our modified

framework adopted QR to estimate what we refer to as full

parameter models (lnSD 5 b0 1 b1lnChl 1 e, SD 5 b0 1

b1lnChl 1 e and lnChl 5 b0 1 b1lnTP 1 e). To infer a good-

ness of fit to the upper boundary of the data distributions,

coefficients of determination (R1) for 99th quantile were cal-

culated as follow: R1 5 1 – (SUM(F) : SUM(R)), where SUM(F)

is the sum of weighted absolute deviations minimized in

estimating each of those full parameter models, and SUM(R)

is the sum of weighted absolute deviations minimized in

estimating each of the corresponding reduced parameter

models (lnSD 5 b0 1 e, SD 5 b0 1 e and lnChl 5 b0 1 e). A

more detailed description of QR can be found in previous

publications (e.g., Cade et al. 1999; Koenker and Machado

1999; Cade and Noon 2003). Furthermore, we applied best-

fit models for the upper boundary to create LC-specific TSIChl

and TSITP equations. A paired-sample t test was used to

examine whether Carlson (1977)’s TSIChl and TSITP values

overestimated LC trophic states relative to LC-specific TSIChl

and TSITP values. Linear regressions and paired-sample t tests

were performed with the SPSS 13.0 software; and QR used

the quantreg package version 5.05 of R (Koenker et al. 2013;

R Development Core Team 2014).

Trophic state classification and phosphorus risk

identification

Using the threshold values of Carlson (1977)’s classifica-

tion (Column 1 of Table 2), we employed the LC-specific

TSIChl index to classify the trophic state for each LC observa-

tion as follows (Column 2 of Table 2): oligotrophic state (O),

mesotrophic state (M), and eutrophic state (E). We per-

formed paired-sample t tests to evaluate the significant dif-

ferences of the TSIChl-based trophic state from the other two

indices (TSISD and TSITP). The TSIChl-based trophic state of

each LC observation was further classified by the correspond-

ing TSISD values into six trophic states (Columns 3 and 4 of

Table 2): oligotrophic state (OOs), mesotrophic state (MMs),

eutrophic state (EEs), pseudomesotrophic state (OMs), and

pseudoeutrophic state (OEs) of oligotrophic observation as

well as pseudoeutrophic state (MEs) of mesotrophic observa-

tion. If the trophic states classified by TSISD and TSIChl are

consistent, they are defined as OOs, MMs, and EEs, indicat-

ing that algal biomass always dominates light attenuation

and its reduction may improve water clarity. If the TSISD-

classified states dramatically deviate from the TSIChl-based

states, these states are characterized as pseudophenomena

(OMs, OEs, and MEs) and nonalgal turbidity, rather than

algal biomass, controls light attenuation. LC-specific TSITP

values were employed to identify mesotrophic risk (OMp)

and eutrophic risk (OEp) of excess phosphorus for the TSIChl-

based oligotrophic state as well as eutrophic risk (MEp) of

excess phosphorus for the TSIChl-based mesotrophic state

(Table 3). When the TSITP-classified states are consistent with

the TSIChl-based states, phosphorus limits algal biomass.

Deviations of the TSITP-classified states from the TSIChl-based

Table 2. The classifications of trophic states using the threshold values of TSIChl and TSISD.

TSIChl values Classifications TSISD values Subclassifications

TSIChl < 40 Oligotrophic (O) TSISD < 40 Oligotrophic (OOs)

40 � TSISD < 50 Pseudomesotrophic (OMs)

TSISD � 50 Pseudoeutrophic (OEs)

40 � TSIChl < 50 Mesotrophic (M) 40 � TSISD < 50 Mesotrophic (MMs)

TSISD � 50 Pseudoeutrophic (MEs)

TSIChl � 50 Eutrophic (E) TSISD � 50 Eutrophic (EEs)

Table 3. The identifications of phosphorus risks to mestrophication and eutrophication with the critical values of TSIChl and TSITP.

TSIChl values Classifications TSITP values Risk identifications

TSIChl < 40 Oligotrophic (O) TSITP < 40 Oligotrophic (OOp)

40 � TSITP < 50 Mesotrophic risk (OMp)

TSITP � 50 Eutrophic risk (OEp)

40 � TSIChl < 50 Mesotrophic (M) 40 � TSITP < 50 Mesotrophic (MMp)

TSITP � 50 Eutrophic risk (MEp)

TSIChl � 50 Eutrophic (E) TSITP � 50 Eutrophic (EEp)

Xu et al. Lake-specific eutrophication assessment
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states (OMp, OEp, and MEp) indicate that excess phosphorus

exists relative to current trophic state requirements.

Multivariate analysis for identifying spatial patterns

Based on the combined TSIChl and TSISD metrics (Table 2),

we quantified the proportion of the six trophic states for

each of the 15 sampling locations. We also combined the

TSIChl and TSITP metrics (Table 3) to assess excess phospho-

rus risks for each of 15 sampling locations. Hierarchical clus-

ter analysis (HCA), performed using PC-ORD 4.0 software

(McCune and Mefford 1999), was used to group the 15 sam-

pling locations into six trophic states and excess phosphorus

risk, respectively.

Results

Revision of TSIChl and TSITP metrics

LC-specific equations and TSI metrics generated by the

revisited and modified framework (Fig. 1B) can be compared

to those by Carlson (1977)’s original approach outlined in

Fig. 1A. Based on the linear regression analysis of Carlson

(1977), the modeled lnSD–lnChl and lnChl–lnTP scatter

plots for the n 5 1426 summer observations produce the LC-

summer equations lnSD 5 1.9520.51lnChl (r2 5 0.342, Fig.

2A) and lnChl 5 0.68lnTP20.49 (r2 5 0.324, Fig. 2B), respec-

tively. QR showed that the intercept estimates increased

with increasing quantiles for each of the full parameter mod-

els (Fig. 3A,D,G). The slope estimates for lnSD 5 b0 1

b1lnChl 1 e declined from 0 at the first to 20.57 at the 16th

quantile and then increased to 20.30 at the 99th quantile

(Fig. 3B), whereas the slopes for SD 5 b0 1 b1lnChl 1 e grad-

ually declined from 0 at the first quantile to 22.00 at 99th

quantile (Fig. 3E) and those for lnChl 5 b0 1 b1lnTP 1 e
gradually increased from 0.20 at the first quantile to 1.09 at

99th quantile (Fig. 3H). When compared to the lnSD 5

2.4020.30lnChl (Fig. 3C), the SD 5 10.1422.00lnChl

(Fig. 3F) shows a substantial improvement in fit to the upper

boundary. The lnChl 5 1.09lnTP20.36 exhibited a good fit

to the upper boundary of lnChl and lnTP distribution (Fig.

3I).

Substituting the LC-99th quantile model (SD 5

10.1422.00lnChl) into TSISD equation, yields the following

LC-specific TSIChl equation:

TSIChl510 3 62
lnð10:1422:00lnChlÞ

ln2

� �

Combining both LC-99th quantile models (SD 5 10.14 –

2.00lnChl and lnChl 5 1.09 lnTP20.36) yields SD 5

10.8622.17lnTP, which was further substituted into the

TSISD equation to develop the LC-specific TSITP equation:

TSITP510 3 62
lnð10:8622:17lnTPÞ

ln2

� �

For n 5 3545 observations, the TSIChl and TSITP values

generated by the LC-specific equations range from 24.1 to

66.7 and 31.2 to 68.8, respectively, and were significantly

lower than those calculated by Carlson (1977)’s equations

(paired differences of TSIChl: mean 5 213.2, standard devia-

tion 5 4.1, 95% confidence interval 5 [213.4, 213.1], t 5

2193.4, p < 0.01, Fig. 4A; paired differences of TSITP: mean

5 27.6, standard deviation 5 4.1, 95% confidence interval

5 [27.8, 27.5], t 5 2110.9, p < 0.01, Fig. 4B).

Classification of trophic states and identification of

phosphorus risks

Following Carlson (1977)’s classification of trophic state

(Table 1), the LC-specific TSIChl value was used to classify all

3545 measurements into three groups: 3434 oligotrophic

observations (Group O: 96.9% of the total 3545 observa-

tions), 104 mesotrophic observations (Group M: 2.9%) and 8

Fig. 2. Comparison between LC summer equations (solid gray line) and Carlson (1977)’s original equations (dashed black line) and of lnSD 5

f(lnChl) (A) and lnChl 5 f(lnTP) (B).
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eutrophic observations (Group E: 0.2%). TSISD values varied

from 26.6 to 83.2, and displayed significantly higher than

LC-specific TSIChl values (paired differences: mean 5 11.2,

standard deviation 5 8.3, 95% confidence interval 5 [11.5,

12.1], t 5 84.5, p< 0.01, Fig. 4C). As an additional metric,

the TSISD value was employed to further divide Group O

into three types (Type OOs, OMs, and OEs) and Group M

into two types (Type MMs and MEs), respectively (Fig. 4A).

Type OOs was characterized as oligotrophic in state (45.6%

of Group O observations), while Type OMs and Type OEs

were defined as pseudomesotrophication (30.3%) and pseu-

doeutrophication (24.1%) in oligotrophic observations. Type

MMs was identified as mesotrophic state (3.8% of Group M),

while Type MEs was explained as pseudoeutrophication

(96.2%) in mesotrophic observations. Group E (named Type

EEs) was characterized as eutrophic in state.

Similarly, LC-specific TSITP values were significantly

higher than LC-specific TSIChl values (paired differences:

Fig. 3. Parameter estimates and 99th quantile fits of lnSD 5 b0 1 b1lnChl 1 n (A, B, and C), SD 5 b0 1 b1lnChl 1 n (D, E, and F) and lnChl 5 b0 1

b1lnTP 1 n (G, H, and I). Black lines indicate the parameter estimate (intercept and slope) as step function of quantiles, and gray lines represent the

lower and upper bounds (95% confidence interval computed using the “rank” method) of the estimates (A, B, D, E, G, and H). Quantiles range from
0.01 to 0.99 by increments of 0.01 for parameter estimates.
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mean 5 15.2; standard deviation 5 7.5, 95% confidence

interval 5 [14.9, 15.4], t 5 120.2, p < 0.01, Fig. 4D). Based

on the TSITP metric, Group O and Group M were further

divided into three types (Type OOP, OMP, and OEP) and two

types (Type MMP and MEP), respectively (Fig. 4B). Type OOP

was not characterized by excessive phosphorus (67.7% of

Group O observations), while Type OMP and Type OEP could

be defined as the risk of excessive phosphorus, which could

potentially lead to mesotrophication (27.9%) and eutrophi-

cation (4.4%), respectively. Type MMP was defined as meso-

trophic, which had no risk of excessive phosphorus leading

to eutrophication (52.9% of Group M observations); while

Type MEP was interpreted as the risk of excessive phospho-

rus, which could potentially lead to eutrophication (47.1%

of Group M observations). Group E (also called as Type EEP)

has been experiencing eutrophication due to excessive phos-

phorus loading.

Clustering general patterns of Lake Champlain

Based on the frequency at which six trophic types

occurred (OOs, OMs, OEs, MMs, MEs, and EEs), the HCA anal-

ysis grouped the 15 LC-locations into two main clusters (I

and II, Fig. 5). Cluster I comprises four monitoring locations

distributed in the southern and northeastern portions of the

lake (South Lake: L02 and L04; Missisquoi Bay: L50 and

L51). The Cluster II locations are distributed in the middle

and northwestern portions of the lake: Port Henry Segment

(L07); Otter Creek Segment (L09), Shelburne Bay (L16), Main

Lake (L19); Burlington Bay (L21); Mallett’s Bay (L25); Cum-

berland Bay (L33); Northeast Arm (L34); Isle LaMotte (L36

and L46), and St. Albans Bay (L40). When the HCA analysis

was based on the frequency of phosphorus risks to mesotro-

phication and eutrophication (Type OOp, OMp, OEp, MMp,

MEp, and EEp), the 15 LC monitoring locations were parti-

tioned into two main clusters (a and b, Fig. 6). Cluster a

Fig. 4. Differences between LC-specific TSIChl (A) and TSITP (B) and Carlson (1977)’s TSIChl and TSITP, as well as classification of trophic states (C:

Type OOs, OMs, OEs, MMs, MEs, and EEs; see Table 2) and identification of phosphorus risk to mestrophication and eutrophication (D: Type OOp,
OMp, OEp, MMp, MEp, and EEp; see Table 3). Dark-gray solid line represents the 1 : 1 line (A, B, C, and D). The black short-dashed lines and the black

solid lines indicate the threshold value (40) and (50) of trophic state indices (TSIChl/SD/TP), respectively (C and D).
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comprised five locations in the southern and northeastern

portions of the lake; and the analysis was completely consist-

ent with Cluster I, except for St. Albans Bay (L40) (Fig. 5).

Cluster b was formed by 10 locations of Cluster II, involving

the middle and northwestern parts of the lake.

Discussion

It is not entirely surprising that Carlson’s 1977 empirical

equations for developing TSIChl and TSITP metrics provide

poor model fit to the LC dataset (i.e., Fig. 2), considering the

equations were based on water quality data compiled from

select lake ecosystems such as Crater Lake and Lake Superior

(Lawson 1972; Schelske et al. 1972) and not necessarily

intended by the author to represent a broad spectrum of

lake environments worldwide. However, these empirical

equations have been treated as such by many in the limno-

logical community who applied Carlson (1977)’s TSIChl/TP

equations directly to their lake systems (e.g., Ludovisi and

Poletti 2003; Westover et al. 2009; Wang et al. 2013). In

Fig. 5. Spatial patterns and two main clusters (I and II) for the occurrence frequency of trophic states (Type OOs, OMs, OEs, MMs, MEs, and EEs, see
Table 2) in LC.
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contrast, our work suggests a relatively robust statistical

approach to developing ecosystem-specific metrics of eutro-

phication assessment for other lakes where the size of the

existing SD, Chl, and TP water quality data is similar to (or

larger than) that of LC.

Revised TSIChl and TSITP metric

Given the low coefficient of determination in the LC-

summer lnSD 5 f(lnChl) relationship (Fig. 2A), we deter-

mined that water clarity for most of the LC-summer observa-

tions is, to a large extent, driven by nonalgal turbidity rather

than algal biomass. Thus, it is not appropriate to use the LC-

summer lnSD 5 f(lnChl) relationship to produce an ecologi-

cally meaningful TSIChl metric for LC, as the metric is

strongly influenced and often driven by nonalgal turbidity

rather than algal biomass. QR has a sound theoretical basis

for this application because it can reasonably characterize

the heterogeneity in response that may arise from the

impact of these kinds of “unmeasured factors” when deriv-

ing empirical relationships. This is further manifested for SD

Fig. 6. Spatial assessment of phosphorus risks to mesotrophication and eutrophication (Type OOp, OMp, OEp, MMp, MEp, and EEp; see Table 3) and
two main clusters (a and b) of the 15 sampling locations in LC.
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5 10.1422.00lnChl, which provides a better fit of the upper

boundary (99th quantile) than lnSD 5 2.4020.30lnChl; and

it supports the development of a metric that is inherently

representative of algal-based trophic state in LC. The power-

ful effect of QR on the generation of the TSIChl metric is

illustrated by the dramatic systematic offset of TSIChl from

the 1 : 1 line (Fig. 4A). In this instance, it appears that using

Carlson (1977)’s approach on the LC data produces an

unwarranted systematic overestimate of trophic concern due

to high levels of nonalgal turbidity. This overestimate is con-

sistent with the high watershed to lake area ratio of 19 : 1,

which produces large pulses of riverine suspended sediment

and potentially riverine dissolved organic carbon, both of

which would produce nonalgal light attenuation (Smeltzer

et al. 2012). As such, the LC-specific QR-derived TSIChl met-

ric should provide a better tool than Carlson (1977)’s metric

for assessing and monitoring the trophic status of this partic-

ular ecosystem. We must emphasize that specific 99th quan-

tile equations and TSIChl metrics derived in this work are

only appropriate for LC and cannot be directly used beyond

the lake. However, our QR-based framework for generating a

lake-specific TSIChl metric (as outlined in Fig. 1B) is applica-

ble to other lakes with the existing water quality data.

In light of our successful modification of the TSIChl metric,

we turned our attention to a similar framework for the revi-

sion of the TSITP metric. The low coefficient of determination

observed in the LC-summer lnChl 5 f(lnTP) relationship (Fig.

2B) suggests that other unmeasured factors, rather than phos-

phorus, influence algal biomass for most of the LC-summer

observations. Similar to the parameter estimates of the SD 5

f(lnChl) relationships, the coefficient of determination for

lnChl 5 1.09lnTP20.36 confirms that QR (99th) has gener-

ated the upper boundary where TP is driving algal biomass of

LC (Fig. 3I). Since the LC-99th model of lnChl 5 f(lnTP) indi-

cates phosphorus limitation of phytoplankton biomass, it

should be used to derive a LC-specific TSITP metric that is

potentially useful for assessment and management of this

lake. The dramatic effect of different approaches for generat-

ing the TSITP metrics is evident in the significant overestima-

tion of TSITP produced using Carlson (1977)’s empirical

equation compared to the LC-specific TSITP equation (Fig.

4B). The observed difference is nontrivial and important for

developing an ecosystem-specific TSITP metric relevant to a

particular lake ecosystem and useful for monitoring ecosys-

tem dynamics over space and time. Again, we would not rec-

ommend the direct application of the LC-specific TSITP

equation beyond LC; but our QR-based framework (outlined

in Fig. 1B) offers a powerful alternative and more robust

approach for creating TSITP equations for any specific lake

using the existing SD, Chl, and TP water quality data.

TSI metric deviation and establishment of dual metrics

In LC, the TSIChl values were significantly lower than

TSISD values (Fig. 4C), suggesting nonalgal turbidity plays an

important role in light attenuation (Carlson and Havens

2005; Xu et al. 2010). However, application of the original

TSIChl equation in LC is partially flawed, because the empiri-

cal data used to derive this equation are not useful indicators

of algal biomass for this system (Fig. 2A). Since the QR-

derived TSIChl was generated from data where water clarity is

driven by algal biomass (Fig. 3F), our modified ecosystem-

specific metrics are more useful and accurate when assessing

and monitoring nonalgal turbidity in this lake ecosystem rel-

ative to previous approaches (e.g., Carlson and Havens 2005;

Xu et al. 2010). Furthermore, utilization of the TSIchl/SD devi-

ations to develop a LC-specific dual metric for classifying the

pseudoeutrophic state of oligotrophic and mesotrophic

observations and the pseudomesotrophic state of oligotro-

phic observations is a potentially powerful tool for research

and management communities. As an addition to Carlson

(1977)’s single metric trophic-state classification (oligotro-

phic, mesotrophic, and eutrophic), the new dual-metric clas-

sification of pseudotrophic states (OMs, OEs, and MEs) may

be used to identify water bodies that are particularly suscep-

tible to trophic shift due to disturbances from nonalgal par-

ticulate matter and algal biomass.

Similar to the observed deviation of TSISD from TSIChl for

LC, we found that TSITP had systematically higher values

than the corresponding TSIChl (Fig. 4B). This is not particu-

larly surprising, as in practice, exclusive phosphorus limita-

tion is not always easily demonstrated across time and space

in many water bodies, and the deviation of TSITP from TSIChl

has often been detected when using Carlson (1977)’s empiri-

cal equations with new datasets (An and Park 2003; James

et al. 2009; Xu et al. 2010). Carlson and Havens (2005) used

the deviation of TSITP from TSIChl to infer that other factors

(e.g., zooplankton grazing) reduce algal biomass below levels

predicated from TP in a phosphorus-limited system. How-

ever, the poor correlation between TP and Chl (Fig. 2B)

again suggests that studying the deviation of TSI metrics

derived from the poorly correlated empirical relationship is

not ideal for assessing or monitoring the LC ecosystem.

Since the LC-specific TSITP equation generated by the QR-

derived lnChl 5 f(lnTP) is more representative of the phos-

phorus limitation of algal biomass in LC (Fig. 2D), it should

provide better prediction of potential trophic state for a

given TP concentration than the original TSITP equation.

Therefore, TSIChl/TP deviations are more meaningful in the

context of trophic status assessment and phosphorus loading

threats for LC, as well as detection and analysis of situations

when factors other than phosphorus limitation or loading

are driving algal biomass across the LC ecosystem. Further-

more, the deviation of TSITP from TSIChl can be harnessed as

another useful dual metric for identifying ecosystems that

contain excessive phosphorus, which could sustain a higher

algal-based trophic state than that observed when phospho-

rus becomes the limiting factor. For example, the deviation

of TSITP from TSIChl in oligotrophic waters and mesotrophic
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waters indicates that excessive phosphorus could drive future

eutrophication of those waters if there is a shift in the

dynamics that limit algal productivity (e.g., hydrodynamics,

nitrogen loading, climate change, zooplankton etc.). This

newly developed dual metric space could therefore generate

critical information for lake research and management com-

munities to co-ordinate and focus future efforts in lakes and

their contributing watersheds.

Clustering patterns of Lake Champlain ecosystem

When applying our QR-derived TSICHL/TP equations and

the related dual metric-driven classification schemes to LC-

specific water quality dataset, dramatic variability in the spa-

tial distribution of trophic status (Fig. 5) and excessive phos-

phorous risk (Fig. 6) was observed. Eutrophication has not

been detected for the middle and northwestern areas of the

lake, where oligotrophic states were still dominant (OOs, Fig.

5) and excessive phosphorus potentially leads to mesotrophi-

cation (OMp, Fig. 6). Low frequency of eutrophication (EEs)

occurred at the southern and northeastern portions of LC,

which were dominated by pseudoeutrophication (OEs and

MEs, Fig. 5) but characterized as high risk of excessive phos-

phorus leading to eutrophication (OEp and MEp, Fig. 6).

These results suggest that the whole lake could be divided

into two main areas based on TSI metrics and related classifi-

cation. In this case study, the general dual-metric patterns

within the LC ecosystem may be used to identify relatively

pristine and threatened portions of the lake; and this analy-

sis is a particularly robust example due to the hydrodynamic

and ecological diversity of the 15 monitoring stations used

for this study. In the relatively deep and well-circulated mid-

dle and northwestern portions of the lake, we did not detect

eutrophication, pseudoeutrophication and excessive phos-

phorus risk to eutrophication, indicating that these regions

remain relatively pristine and immediate threats associated

with a trophic shift due to phosphorus loading are relatively

low. Conversely, the relatively shallow and agricultural

watershed-dominated southern and northeastern regions of

the lake were classified as eutrophic or pseudoeutrophic eco-

systems with excessive phosphorus risk for eutrophication.

Therefore, our metrics identify these lake segments of LC as

areas of trophic concern that warrant additional research

and management resources to better understand ecosystem

processes and the implementation of nutrient control meas-

ures. Furthermore, considering the diverse hydrodynamic

and biological environments associated with the lake seg-

ments studied here, coupled with the general confirmation

of existing knowledge developed from long-term monitoring

and extensive LC ecosystem research (i.e., LCBP 2012), the

approach outlined here should be broadly applicable to a

diverse array of lake environments and ecosystems. As such,

this relatively simple but robust lake-specific approach can

be employed by relevant management and research

communities to monitor and characterize diverse lake eco-

systems and assess the threat potential for ecosystem shifts.
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